プロフィール

mathnegi

Author:mathnegi
ゆる~い人間です(*´ヮ`*)
宮城県在住~

カレンダー

05 | 2017/06 | 07
- - - - 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 -

最新記事

全記事リスト

全ての記事を表示する

最新コメント

月別アーカイブ

カテゴリ

閲覧者数

検索フォーム

RSSリンクの表示

リンク

ブロとも申請フォーム

この人とブロともになる

QRコード

QR

電卓だよん♪

電 卓

お問い合わせはこちらまで~♪

名前:
メール:
件名:
本文:

受験ブログ 大学受験(指導・勉強法)へ

スポンサーサイト

--.--.-- --:--|スポンサー広告
上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

2016年後期東北大入試理系数学 第2問

2016.07.04 12:39|大学入試問題
どもども。

今回は今年の東北大後期入試の第2問を見てみます~
問題はこちら~ くりmini


2016tok2.jpg


数列の問題です~
あるウイルスの感染拡大モデルの計算をするという趣旨になっています~
なんだか物騒な話ですね

ある1人の感染者が大本の感染源になっているような感染者が n 日間で何人になるかを求めていきます。
新規感染者にはウイルス潜伏期間が1日あり,その後は各自毎日2人ずつ新規感染者を出していきます~

n 日後には  人の感染者がいるものとして数列  に関する漸化式を立てるのが(1)の設問です~

n+2 日目の感染者  人というのは,前日までに既に感染していた人数と,この日感染した人数の和であることに
着目しましょう~ hunayurei.gif
前日までに既に感染していた人数はもちろん  人です。
一方,前日に感染した人はこの日はウイルス潜伏期間中なので新たな感染者は出しません。
この日新たに感染した人はすべて n 日目の時点までに感染していた人由来のものであり,
その新規感染者数は  人となります~



bb1_20160704024935ac3.jpg
bb2_201607040249368c0.jpg



それでは  の下で漸化式を解いていきましょう~
今回はノーヒントで解いていかなければなりません。
隣接3項間の漸化式が相手なら,まずは特性方程式を解くところから始めていくとよいです~



を解いて, x=-1,2 が得られます~
このことから,



および



という関係式が得られます~
数列  と数列   はともに等比数列になるわけですね。
特性方程式の存在を知らなくても上記の2つのうち最低1つが実験的考察見つけられれば答えまで到達することが可能です
上記の2つの数列の一般項が分かればあとはそれらの足し引きで終わりです~

bb3_20160704024936684.jpg


2つの数列の一般項の足し引きで答えを出していきましたが,2つのうち1個の一般項が分かれば
そこから答えを出していくことも出来ます~



がいま分かっている状態とします。ここで,両辺を  で割っていく手法と 
 で割っていく手法があります。
前者で攻めると,

bb4_201607040249366db.jpg


一方,後者で攻めると,


bb5_20160704024937d95.jpg
bb6_201607040249371da.jpg


また,数列  が公比2の等比数列になることに着目する手もあります~
その際,  とおいて,元の数列の奇数番目の項だけからなる数列  と
 とおいて,元の数列の偶数番目の項だけからなる数列  を考えて
 に関する漸化式をそれぞれ作ると,隣接2項間の漸化式の解法で処理できるので楽です。


bb8.jpg
bb9.jpg




最後に感染者が1万人超えするのが何日後か調べます~




という不等式を考えるわけですね。
この式を直接式変形して n について解いていく,という作戦は得策ではなさそうです~
 の部分は  の延々ループです。大きさを決めるのは実質的に  の部分です。このため,



を解くことで概算が出来てしまいます。
この計算結果と数列  の単調増加性を合わせることで結論まで到達できます~ kitune.gif



bb7_20160704025007c38.jpg










  
関連記事
スポンサーサイト

テーマ:大学受験
ジャンル:学校・教育

コメント

非公開コメント

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。